Europe/Lisbon — Online

Gil Refael

Gil Refael, Institute for Quantum Information and Matter
Floquet higher-order topological insulators: principles and path towards realizations

The co-existence of spatial and non-spatial symmetries together with appropriate commutation/anticommutation relations between them can give rise to static higher-order topological phases, which host gapless boundary modes of co-dimension higher than one. Alternatively, space-time symmetries in a Floquet system can also lead to anomalous Floquet boundary modes of higher co-dimensions, with different commutation/anticommutation relations with respect to non-spatial symmetries. In my talk I will review how these dynamical analogs of the static HOTI's emerge, and also show how a coherently excited phonon mode can be used to support non-trivial Floquet higher-order topological phases. If time allows, I will also review recent work on Floquet engineering and band flattening of twisted-bilayer graphene.


Additional file

Refael slides.pdf