Europe/Lisbon
Online

Hannah Price

Hannah Price, University of Birmingham
Exploring 4D topological physics in the laboratory

Spatial dimensionality plays a key role in our understanding of topological physics, with different topological invariants needed to characterise systems with different numbers of spatial dimensions. In a 2D quantum Hall system, for example, a robust quantisation of the Hall response is related to the first Chern number: a 2D topological invariant of the electronic energy bands. Generalising to more spatial dimensions, it was shown that a new type of quantum Hall effect could emerge in four dimensions, but where the quantised response was related to a four-dimensional topological invariant, namely the second Chern number. While systems with four spatial dimensions may seem abstract, recent developments in ultracold atoms and photonics have opened the door to exploring such higher-dimensional topological physics experimentally. In this talk, I will introduce the theory of 4D topological phases of matter, before discussing recent experiments in cold atoms, photonics and electrical circuits that have begun to probe aspects of this physics in the laboratory.

Additional file

document preview

Hannah Price's slides